Software engineering methods provide an organized and systematic approach to developing software for a target computer. There are numerous methods from which to choose, and it is important for the software engineer to choose an appropriate method or methods for the software development task at hand; this choice can have a dramatic effect on the success of the software project. Use of these software engineering methods coupled with people of the right skill set and tools enable the software engineers to visualize the details of the software and ultimately transform the representation into a working set of code and data.
Selected software engineering methods are discussed below. The topic areas are organized into discussions of Heuristic Methods, Formal Methods, Prototyping Methods, and Agile Methods.
Heuristic Methods
Heuristic methods are those experience-based software engineering methods that have been and are fairly widely practiced in the software industry. This topic area contains three broad discussion categories: structured analysis and design methods, data modeling methods, and object oriented analysis and design methods.
• Structured Analysis and Design Methods: The software model is developed primarily from a functional or behavioral viewpoint, starting from a high-level view of the software (including data and control elements) and then progressively decomposing or refining the model components through increasingly detailed designs. The detailed design eventually converges to very specific details or specifications of the software that must be coded (by hand, automatically generated, or both), built, tested, and verified.
• Data Modeling Methods: The data model is constructed from the viewpoint of the data or information used. Data tables and relationships define the data models. This data modeling method is used primarily for defining and analyzing data requirements supporting database designs or data repositories typically found in business software, where data is actively managed as a business systems resource or asset.
• Object-Oriented Analysis and Design Methods: The object-oriented model is represented as a collection of objects that encapsulate data and relationships and interact with other objects through methods. Objects may be real-world items or virtual items. The software model is constructed using diagrams to constitute selected views of the software. Progressive refinement of the software models leads to a detailed design. The detailed design is then either evolved through successive iteration or transformed (using some mechanism) into the implementation view of the model, where the code and packaging approach for eventual software product release and deployment is expressed.
Formal Methods
Formal methods are software engineering methods used to specify, develop, and verify the software through application of a rigorous mathematically based notation and language. Through use of a specification language, the software model can be checked for consistency (in other words, lack of ambiguity), completeness, and correctness in a systematic and automated or semi-automated fashion. This topic is related to the Formal Analysis section in the Software Requirements KA. This section addresses specification languages, program refinement and derivation, formal verification, and logical inference.
• Specification Languages: Specification languages provide the mathematical basis for a formal method; specification languages are formal, higher level computer languages (in other words, not a classic 3rd Generation Language (3GL) programming language) used during the software specification, requirements analysis, and/ or design stages to describe specific input/ output behavior. Specification languages are not directly executable languages; they are typically comprised of a notation and syntax, semantics for use of the notation, and a set of allowed relations for objects.
• Program Refinement and Derivation: Program refinement is the process of creating a lower level (or more detailed) specification using a series of transformations. It is through successive transformations that the software engineer derives an executable representation of a program. Specifications may be refined, adding details until the model can be formulated in a 3GL programming language or in an executable portion of the chosen specification language. This specification refinement is made possible by defining specifications with precise semantic properties; the specifications must set out not only the relationships between entities but also the exact runtime meanings of those relationships and operations.
• Formal Verification: Model checking is a formal verification method; it typically involves performing a state-space exploration or reachability analysis to demonstrate that the represented software design has or preserves certain model properties of interest. An example of model checking is an analysis that verifies correct program behavior under all possible interleaving of event or message arrivals. The use of formal verification requires a rigorously specified model of the software and its operational environment; this model often takes the form of a finite state machine or other formally defined automaton.
• Logical Inference: Logical inference is a method of designing software that involves specifying preconditions and postconditions around each significant block of the design, and—using mathematical logic—developing the proof that those preconditions and postconditions must hold under all inputs. This provides a way for the software engineer to predict software behavior without having to execute the software. Some Integrated Development Environments (IDEs) include ways to represent these proofs along with the design or code.
Prototyping Methods
Software prototyping is an activity that generally creates incomplete or minimally functional versions of a software application, usually for trying out specific new features, soliciting feedback on software requirements or user interfaces, further exploring software requirements, software design, or implementation options, and/or gaining some other useful insight into the software. The software engineer selects a prototyping method to understand the least understood aspects or components of the software first; this approach is in contrast with other software engineering methods that usually begin development with the most understood portions first. Typically, the prototyped product does not become the final software product without extensive development rework or refactoring.
This section discusses prototyping styles, targets, and evaluation techniques in brief.
• Prototyping Style: This addresses the various approaches to developing prototypes. Prototypes can be developed as throwaway code or paper products, as an evolution of a working design, or as an executable specification. Different prototyping life cycle processes are typically used for each style. The style chosen is based on the type of results the project needs, the quality of the results needed, and the urgency of the results.
• Prototyping Target: The target of the prototype activity is the specific product being served by the prototyping effort. Examples of prototyping targets include a requirements specification, an architectural design element or component, an algorithm, or a humanmachine user interface.
• Prototyping Evaluation Techniques: A prototype may be used or evaluated in a number of ways by the software engineer or other project stakeholders, driven primarily by the underlying reasons that led to prototype development in the first place. Prototypes may be evaluated or tested against the actual implemented software or against a target set of requirements (for example, a requirements prototype); the prototype may also serve as a model for a future software development effort (for example, as in a user interface specification).
Agile Methods
Agile methods were born in the 1990s from the need to reduce the apparent large overhead associated with heavyweight, plan-based methods used in large-scale software-development projects. Agile methods are considered lightweight methods in that they are characterized by short, iterative development cycles, self-organizing teams, simpler designs, code refactoring, test-driven development, frequent customer involvement, and an emphasis on creating a demonstrable working product with each development cycle.
Many agile methods are available in the literature; some of the more popular approaches, which are discussed here in brief, include Rapid Application Development (RAD), eXtreme Programming (XP), Scrum, and Feature-Driven Development (FDD).
• RAD: Rapid software development methods are used primarily in data-intensive, businesssystems application development. The RAD method is enabled with special-purpose database development tools used by software engineers to quickly develop, test, and deploy new or modified business applications.
• XP: This approach uses stories or scenarios for requirements, develops tests first, has direct customer involvement on the team (typically defining acceptance tests), uses pair programming, and provides for continuous code refactoring and integration. Stories are decomposed into tasks, prioritized, estimated, developed, and tested. Each increment of software is tested with automated and manual tests; an increment may be released frequently, such as every couple of weeks or so.
• Scrum: This agile approach is more project management-friendly than the others. The scrum master manages the activities within the project increment; each increment is called a sprint and lasts no more than 30 days. A Product Backlog Item (PBI) list is developed from which tasks are identified, defined, prioritized, and estimated. A working version of the software is tested and released in each increment. Daily scrum meetings ensure work is managed to plan.
• FDD: This is a model-driven, short, iterative software development approach using a five-phase process: (1) develop a product model to scope the breadth of the domain, (2) create the list of needs or features, (3) build the feature development plan, (4) develop designs for iteration-specific features, and (5) code, test, and then integrate the features. FDD is similar to an incremental software development approach; it is also similar to XP, except that code ownership is assigned to individuals rather than the team. FDD emphasizes an overall architectural approach to the software, which promotes building the feature correctly the first time rather than emphasizing continual refactoring.
There are many more variations of agile methods in the literature and in practice. Note that there will always be a place for heavyweight, plan-based software engineering methods as well as places where agile methods shine. There are new methods arising from combinations of agile and plan-based methods where practitioners are defining new methods that balance the features needed in both heavyweight and lightweight methods based primarily on prevailing organizational business needs. These business needs, as typically represented by some of the project stakeholders, should and do drive the choice in using one software engineering method over another or in constructing a new method from the best features of a combination of software engineering methods.
Back - 3 - Analysis Of Models
Home - Software Engineering Models And Methods
Main - The BOK
Published on : 30-May-2018
Ref no : DTC-WPUB-000072
Comments
Post a Comment