The requirements documents may be subject to validation and verification procedures. The requirements may be validated to ensure that the software engineer has understood the requirements; it is also important to verify that a requirements document conforms to company standards and that it is understandable, consistent, and complete. In cases where documented company standards or terminology are inconsistent with widely accepted standards, a mapping between the two should be agreed on and appended to the document.
Formal notations offer the important advantage of permitting the last two properties to be proven (in a restricted sense, at least). Different stakeholders, including representatives of the customer and developer, should review the document(s). Requirements documents are subject to the same configuration management practices as the other deliverables of the software life cycle processes. When practical, the individual requirements are also subject to configuration management, generally using a requirements management tool (see topic 8, Software Requirements Tools).
It is normal to explicitly schedule one or more points in the requirements process where the requirements are validated. The aim is to pick up any problems before resources are committed to addressing the requirements. Requirements validation is concerned with the process of examining the requirements document to ensure that it defines the right software (that is, the software that the users expect).
Requirements Reviews
Perhaps the most common means of validation is by inspection or reviews of the requirements document(s). A group of reviewers is assigned a brief to look for errors, mistaken assumptions, lack of clarity, and deviation from standard practice. The composition of the group that conducts the review is important (at least one representative of the customer should be included for a customer-driven project, for example), and it may help to provide guidance on what to look for in the form of checklists.
Reviews may be constituted on completion of the system definition document, the system specification document, the software requirements specification document, the baseline specification for a new release, or at any other step in the process.
Prototyping
Prototyping is commonly a means for validating the software engineer’s interpretation of the software requirements, as well as for eliciting new requirements. As with elicitation, there is a range of prototyping techniques and a number of points in the process where prototype validation may be appropriate. The advantage of prototypes is that they can make it easier to interpret the software engineer’s assumptions and, where needed, give useful feedback on why they are wrong. For example, the dynamic behavior of a user interface can be better understood through an animated prototype than through textual description or graphical models. The volatility of a requirement that is defined after prototyping has been done is extremely low because there is agreement between the stakeholder and the software engineer—therefore, for safety-critical and crucial features prototyping would really help. There are also disadvantages, however. These include the danger of users’ attention being distracted from the core underlying functionality by cosmetic issues or quality problems with the prototype. For this reason, some advocate prototypes that avoid software, such as flip-chart-based mockups. Prototypes may be costly to develop. However, if they avoid the wastage of resources caused by trying to satisfy erroneous requirements, their cost can be more easily justified. Early prototypes may contain aspects of the final solution. Prototypes may be evolutionary as opposed to throwaway.
Model Validation
It is typically necessary to validate the quality of the models developed during analysis. For example, in object models, it is useful to perform a static analysis to verify that communication paths exist between objects that, in the stakeholders’ domain, exchange data. If formal analysis notations are used, it is possible to use formal reasoning to prove specification properties. This topic is closely related to the Software Engineering Models and Methods KA.
Acceptance Tests
An essential property of a software requirement is that it should be possible to validate that the finished product satisfies it. Requirements that cannot be validated are really just “wishes.” An important task is therefore planning how to verify each requirement. In most cases, designing acceptance tests does this for how end-users typically conduct business using the system.
Identifying and designing acceptance tests may be difficult for nonfunctional requirements (see section 1.3, Functional and Nonfunctional Requirements). To be validated, they must first be analyzed and decomposed to the point where they can be expressed quantitatively.
Additional information can be found in Acceptance/Qualification/Conformance Testing in the Software Testing KA.
Back - 5 - Requirements Specification
Next - 7 - Practical Considerations
Home - Software Requirement
Main - The BOK
Published on : 30-May-2018
Ref no : DTC-WPUB-000007
Comments
Post a Comment